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ABSTRACT 

Shadows are natural phenomena, which 

occur when the light is blocked. Although 

shadows provide important visual cues for 

object shape perception, illumination 

position, objects occlusion, etc., shadow-

free images can help to improve the 

performance of the tasks such as object 

recognition, object tracking and 

information enhancement. For example, for 

high spatial resolution remote sense image, 

shadow removal is very critical for target 

identification and information recovering. 

Shadow removal and editing can also 

improve the visual realism and physical 

realism in image processing. Shadow 

removal is now an popular research 

direction in computer vision and image 

processing communities.The first problem 

to be addressed is shadow detection. For 

image with complex shadows, exactly 

shadow detecting is a difficult problem. For 

example, sometimes it is even difficult for 

human to differentiate little dark objects 

from the scattered shadow points. The 

second one is When the illumination 

conditions, object materials, and scene 

shapes are complex, the shadows in the 

image are usually non uniform, which 

makes it difficult to obtain consistent 

shadow removal results. Finally, as the 

illumination usually changes dramatically 

in the boundary regions, effectively 

recovering the illumination on the shadow 

boundaries is also a challenging task. In this 

project, we present a novel shadow removal 

approach using an illumination recovering 

optimization method. We first detect the 

shadows in the input image, and compute 

the shadow alpha for the shadows. Then we 

adaptively decompose the input image into 

overlapped patches according to the 

shadow distribution. Denser patches are put 

on the shadow boundaries and the regions 

with dramatically changed illumination. 

Finally, by building the correspondence 

between the shadow patch and the lit patch 

based on illumination independent texture 

similarity, we develop an optimized 

illumination recovering operator which can 

effectively remove the shadows and recover 

the texture detail under the shadow 

patches.In stage 2 improve the PSNR  value 

with shadow image and shadow free image 

 

I.INTRODUCTION 

In the digital age, video surveillance 

systems have become ubiquitous tools for 

enhancing security, managing traffic, 

monitoring public spaces, and supporting 

intelligent decision-making in smart cities. 

With the growing demand for automated, 

real-time surveillance systems capable of 

reducing human monitoring efforts, the 

importance of robust and efficient computer 
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vision techniques has grown exponentially. 

At the core of many computer vision-based 

surveillance applications lies foreground 

detection—a critical pre-processing step 

responsible for distinguishing moving 

objects from a static background in video 

sequences. This foundational task enables 

higher-level functions such as object 

tracking, classification, anomaly detection, 

and behavior analysis. 

 

Fig : 1.1  Diffuse 

Fig : 1.2  Specularity 

Fig: 1.3  Self-shading 

The presence of shadows in foreground 

masks leads to various undesirable 

outcomes in surveillance applications. For 

instance, in a people-counting system, 

shadows can cause an overestimation of the 

number of individuals. In multi-object 

tracking, shadows might result in object 

merging, incorrect trajectory estimation, or 

identity switching. In traffic monitoring, 

vehicle shadows may be falsely detected as 

separate moving objects, resulting in false 

positives. Therefore, accurate detection and 

removal of shadows is vital to enhance the 

precision and reliability of surveillance 

systems. 

Shadows can be categorized into two main 

types: self-shadows and cast shadows. 

Self-shadows occur on the object itself, 

caused by occlusion of light on certain parts 

of its surface. These are generally less 

problematic in surveillance systems 

because they remain within the object 

boundaries. Cast shadows, on the other 

hand, fall on the background or nearby 

objects, creating the illusion of extended 

object boundaries. These shadows interfere 

with object segmentation and are the 

primary focus of most shadow detection 

and removal efforts. Their dynamic nature 

and similarity to the actual foreground in 

terms of intensity and motion make them 

difficult to distinguish using traditional 

image processing techniques. 

Foreground detection typically operates by 

comparing the current frame of a video to a 

reference background model. Any 

significant deviation in pixel intensity is 

marked as foreground. However, shadows 

also create intensity variations that trigger 

this detection, especially in systems that 

rely solely on grayscale or RGB pixel 

differences. Furthermore, because shadows 

tend to maintain similar edges and spatial 

continuity with the objects casting them, 

simplistic motion-based methods also fail 

to separate the two. This makes shadow 

removal a necessary enhancement to 

ensure accurate shape, size, and trajectory 

estimation of foreground objects. 

Over the years, various strategies have been 

developed to address the problem of 

shadow misclassification. These 

approaches can be broadly divided into 

color-based, geometry-based, texture-

based, and learning-based techniques. 

Color-based methods exploit the fact that 

shadows typically reduce illumination 

without altering chromaticity. These 

methods often work in HSV or normalized 

RGB color spaces where brightness is 

separated from color information. While 
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relatively simple and computationally 

efficient, such methods struggle under non-

uniform lighting or in scenes with low color 

contrast. 

Geometry-based techniques use the relative 

position of the object, light source, and 

camera to predict the shape and position of 

shadows. These methods may rely on 

camera calibration or multiple viewpoints 

to achieve accuracy, making them more 

suitable for controlled environments rather 

than dynamic, real-world surveillance. 

Texture-based methods, on the other hand, 

operate under the assumption that shadows 

preserve the texture of the background. 

These use descriptors such as Local Binary 

Patterns (LBP) or Gabor filters to analyze 

textural consistency. While effective in 

some cases, these methods can fail in 

texture-less areas or under noisy conditions. 

More recently, machine learning and 

deep learning techniques have 

revolutionized shadow detection. 

Supervised learning algorithms such as 

Support Vector Machines (SVMs), 

decision trees, and random forests have 

been applied to classify pixels based on 

hand-crafted features like color, intensity, 

and gradient. With the advent of deep 

learning, convolutional neural networks 

(CNNs) have shown superior performance 

in learning complex, hierarchical features 

directly from raw image data. These 

models, trained on large datasets with 

annotated shadows, can distinguish 

between foreground and shadow regions 

with high accuracy. However, they require 

significant computational resources, large 

training datasets, and careful tuning to 

generalize across diverse environments. 

Despite their promise, machine learning-

based approaches also face challenges, 

especially when deployed in real-time 

video surveillance systems. Issues such as 

scalability, adaptability to changing 

environments, and robustness to noise 

remain pressing concerns. Moreover, the 

diversity of scenes—ranging from outdoor 

traffic intersections to indoor retail stores—

means that no single shadow removal 

technique is universally effective. As such, 

current research is increasingly focused on 

hybrid methods that combine the strengths 

of multiple approaches. For example, 

integrating color information with learned 

features or combining geometric reasoning 

with temporal consistency has been shown 

to improve accuracy while maintaining 

real-time performance. 

The significance of effective shadow 

removal extends beyond improving 

detection accuracy. It also contributes to 

system efficiency by reducing the number 

of false positives and minimizing the need 

for post-processing corrections. In crowd 

surveillance, shadow-free detection allows 

for accurate people counting, flow analysis, 

and detection of abnormal movement. In 

traffic management, it improves vehicle 

detection, classification, and tracking. In 

security applications, it aids in more precise 

intrusion detection, loitering analysis, and 

automated response systems. 

Furthermore, as surveillance systems 

become more autonomous and are deployed 

in edge computing environments (e.g., 

embedded systems, smart cameras), there is 

a growing need for lightweight, energy-

efficient shadow removal methods. The 

ability to perform accurate foreground 

detection with shadow elimination in real 

time on low-power devices will enable 

widespread deployment in resource-

constrained settings such as rural areas, 
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small businesses, and portable surveillance 

units. 

II. LITERATURE SURVEY 

The process of foreground detection in 

video surveillance plays a critical role in 

understanding dynamic scenes, and one of 

the principal challenges is the accurate 

removal of shadows. Shadows can easily be 

misclassified as moving objects, resulting 

in significant errors in object detection and 

tracking. Over the years, numerous 

methodologies have been proposed to 

address this issue, each offering varied 

performance in terms of accuracy, 

computational cost, and robustness to 

different lighting conditions. 

In early methods, Cucchiara et al. (2003) 

used chromaticity-based models for 

shadow detection by analyzing the color 

components in HSV space. Their 

configuration utilized background 

subtraction with a Gaussian Mixture Model 

(GMM), and shadows were removed by 

comparing the color and brightness 

distortion of foreground pixels. They 

proposed a chromaticity-based method for 

shadow suppression that effectively 

separated shadows from objects but was 

sensitive to noise in color information. 

Hsieh et al. (2003) advanced this by 

integrating geometric features along with 

color cues for identifying shadows, thereby 

reducing false positives in human motion 

tracking. 

Mikic et al. (2000) implemented an 

intensity ratio and hue difference method to 

identify shadow pixels. Their configuration 

operated in RGB color space and achieved 

high detection accuracy under controlled 

indoor environments. The proposed 

configuration combined motion detection 

with color ratio thresholding, which 

improved real-time processing but lacked 

robustness in outdoor scenes with complex 

lighting. Similarly, Horprasert et al. (1999) 

introduced the color model using brightness 

and chromaticity distortion metrics, which 

became a foundational approach in later 

works. Their method, although effective, 

was limited by assumptions of uniform 

lighting. 

Sanin et al. (2012) presented a comparative 

evaluation of shadow detection methods 

and proposed improvements based on 

adaptive background modeling and 

statistical learning. Their configuration 

used GMM and included both color and 

gradient information to enhance detection 

accuracy. The proposed method 

demonstrated superior performance in 

diverse lighting conditions, but the 

computational complexity remained a 

challenge. 

Zhang et al. (2014) proposed a novel 

approach combining texture and color 

features using a support vector machine 

(SVM) for shadow detection. Their existing 

configuration used a mixture of Gaussians 

for background modeling and extracted 

Local Binary Pattern (LBP) texture 

features. The proposed configuration 

incorporated a feature fusion mechanism 

with supervised learning, offering high 

precision and recall for shadow suppression 

in both indoor and outdoor scenes. Wang 

and Wang (2007) explored edge-based 

methods for shadow detection by analyzing 

the discontinuities in object contours. Their 

approach showed improved performance 

for moving cast shadows but was prone to 

errors in cases of blurred edges. 

A promising approach by Leone and 

Distante (2007) utilized shadow detection 
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in YUV color space and focused on road 

surveillance. They employed background 

subtraction followed by morphological 

analysis to refine object masks. Their 

system demonstrated improved vehicle 

detection rates by reducing shadow-

induced misclassifications. Another 

innovative method by Silva and Corte-Real 

(2005) employed temporal information for 

shadow tracking, leveraging the persistence 

of shadow regions across frames for better 

classification. 

Here's a section focused specifically on the 

Existing Configuration for shadow 

removal in foreground detection within 

video surveillance systems, summarizing 

the key methods used in previous research. 

III. EXISTING 

CONFIGURATION 

The existing configurations for shadow 

removal in foreground detection are 

primarily based on traditional computer 

vision techniques. Most early systems rely 

on background subtraction methods such as 

Gaussian Mixture Models (GMM), frame 

differencing, and statistical background 

modeling. Once the foreground is detected, 

additional processing is used to distinguish 

shadows from real moving objects. 

A widely adopted approach involves color 

space transformations. For example, 

Horprasert et al. (1999) proposed a method 

in RGB space that evaluates brightness 

distortion and chromaticity distortion to 

identify shadows. Similarly, Cucchiara et 

al. (2003) worked in HSV color space, 

assuming that shadows darken pixel 

intensity but preserve hue and saturation. 

These models use thresholds on color ratios 

to classify shadow pixels after foreground 

detection. 

Some configurations integrate edge 

information. Wang and Wang (2007) detect 

cast shadows by comparing edge maps of 

current frames with those of background 

models, based on the assumption that 

shadows do not change object contours. 

Gradient-based techniques are also 

common; Huang and Chen (2009) used 

local gradient features to differentiate 

between soft edges caused by shadows and 

hard edges caused by objects. 

Texture analysis methods, such as Local 

Binary Patterns (LBP), have also been 

employed to enhance shadow detection. 

Zhang et al. (2014) used both color and 

texture descriptors to improve classification 

accuracy. Leone and Distante (2007) 

applied texture consistency checks in road 

surveillance footage to refine object 

segmentation and eliminate shadows. 

Shadow modeling using temporal 

information is another configuration seen in 

Silva and Corte-Real (2005), where 

shadows are tracked over multiple frames 

under the assumption that they appear and 

move with a consistent offset from objects. 

This helps in distinguishing persistent 

shadows from actual object motion. 

Some systems use Bayesian or fuzzy logic 

frameworks to combine multiple features—

motion, color, and edge cues—to detect 

shadows more robustly. Gong and Medioni 

(2011) used a probabilistic model to fuse 

multiple indicators of shadow presence, 

allowing dynamic adaptation to different 

environments. 

These existing configurations, while 

effective in many scenarios, often face 

limitations in terms of sensitivity to lighting 

changes, computational load, and 

generalizability across different scenes. 
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Their reliance on handcrafted features and 

rule-based decision-making also restricts 

adaptability in complex or dynamic 

surveillance environments. 

IV. METHODOLOGY 

The proposed methodology for shadow 

removal in foreground detection within 

video surveillance systems introduces a 

hybrid framework combining background 

subtraction, color space transformation, 

texture analysis, and deep learning-based 

refinement to improve the accuracy of 

foreground segmentation by effectively 

eliminating shadows. The goal is to 

distinguish moving objects from their 

shadows, which are often misclassified as 

part of the foreground, leading to errors in 

object detection and tracking. 

The system begins with video frame 

acquisition from surveillance cameras, 

followed by background modeling using a 

Gaussian Mixture Model (GMM). GMM is 

chosen for its adaptability to dynamic 

backgrounds and capability to handle slow 

lighting changes. It computes a statistical 

model of the scene’s background over time 

by assigning probabilities to pixel 

intensities, allowing for the initial 

segmentation of moving foreground objects 

from static background elements. 

Once foreground candidates are detected, 

the system performs a transformation from 

RGB to an alternative color space, 

specifically HSV (Hue, Saturation, Value), 

which is more effective in distinguishing 

shadows due to its separation of 

chromaticity from intensity. Shadows tend 

to retain the hue and saturation of 

background pixels but significantly reduce 

their brightness. By calculating the 

chromaticity distortion and brightness 

distortion between the current frame and 

the background model, pixels with 

significant brightness reduction but 

minimal chromatic change are labeled as 

potential shadows. 

To further improve shadow discrimination, 

the system incorporates texture consistency 

analysis using Local Binary Patterns (LBP). 

The intuition is that while shadows darken 

pixel intensity, they do not significantly 

alter the underlying texture of the surface. 

The LBP descriptors are computed for both 

the detected foreground and the 

corresponding background regions. If the 

texture similarity exceeds a certain 

threshold, the pixel is more likely to be a 

shadow rather than a true moving object. 

The refined classification is then passed 

through a deep learning-based classifier, 

which functions as a post-processing 

module to validate and correct the shadow 

labeling. A lightweight convolutional 

neural network (CNN), trained on 

annotated datasets of shadow and non-

shadow foreground pixels, is applied to 

local image patches centered on each 

foreground pixel. The network learns to 

classify patches based on complex features 

that include spatial patterns, edge 

information, and illumination cues that are 

difficult to capture through traditional rules. 

To enhance temporal consistency and 

reduce flickering between frames, a 

temporal filtering module is applied. This 

component uses optical flow to track the 

movement of pixels across consecutive 

frames. If a region labeled as a shadow 

remains stationary or follows the motion of 

an object consistently, its classification is 

adjusted accordingly. This reduces false 

positives in dynamic scenes, especially 

under moving lights or weather changes. 
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Additionally, an adaptive learning 

mechanism is introduced to update the 

background model and classification 

thresholds based on environmental changes 

such as lighting shifts, time of day, and 

seasonal variations. This is accomplished 

by monitoring pixel classification 

confidence and feeding uncertain cases 

back into a semi-supervised learning loop, 

allowing the system to gradually improve 

performance over time without requiring 

extensive manual annotation. 

The final output of the proposed 

methodology is a clean binary foreground 

mask where true moving objects are 

isolated from both the static background 

and associated shadows. This mask can 

then be used by higher-level modules in the 

surveillance system for object tracking, 

behavioral analysis, and event detection. 

Overall, the proposed methodology 

addresses the shadow removal challenge by 

combining statistical modeling, color and 

texture features, temporal consistency, and 

machine learning. This integrated approach 

ensures high accuracy, adaptability to real-

world scenarios, and robustness against 

common environmental variations in 

surveillance settings. 

V.PROPOSED 

CONFIGURATION 

To overcome the limitations of traditional 

techniques, recent proposed configurations 

for shadow removal in foreground detection 

systems have adopted more advanced 

approaches, especially those incorporating 

machine learning and deep learning 

methodologies. These newer configurations 

aim to enhance accuracy, robustness, and 

real-time performance across various 

environments. 

One prominent direction involves the 

integration of supervised learning 

techniques. Zhang et al. (2014) proposed a 

configuration using Support Vector 

Machines (SVMs) trained on a combination 

of texture and color features extracted from 

foreground regions. This hybrid feature set 

enabled better classification between 

shadows and true moving objects, 

particularly under challenging lighting 

conditions. 

More advanced proposals involve 

convolutional neural networks (CNNs), 

which are capable of learning complex 

features directly from raw image data. Zhu 

et al. (2018) introduced a deep learning 

model trained on datasets containing 

annotated shadow masks. Their 

configuration involved an encoder-decoder 

architecture that learns to distinguish 

shadow patterns from foreground objects in 

an end-to-end fashion. This deep model 

showed significant improvements over 

rule-based systems, especially in dynamic 

outdoor settings. 

Fang et al. (2019) extended this idea with a 

dual-branch CNN design that separately 

processes features of the foreground and its 

shadow. By learning distinct 

representations for each, the system can 

more accurately isolate and suppress 

shadow regions during segmentation. 

Although this configuration demands 

higher computational resources, it delivers 

superior accuracy, particularly in cluttered 

scenes. 

Other proposals focus on combining deep 

learning with traditional methods to balance 

performance and efficiency. For instance, 

Sanin et al. (2012) proposed enhancing 

Gaussian background modeling with 

learned statistical classifiers that adapt to 
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scene changes. Gong and Medioni (2011) 

introduced a Bayesian network that 

dynamically fuses cues from motion, color, 

and gradient information, allowing the 

system to adapt in real-time without 

retraining. 

Several proposed configurations also 

exploit temporal and geometric cues. Li et 

al. (2016) introduced a method that 

combines an illumination invariant model 

with temporal consistency analysis to 

identify shadow regions that persist across 

frames. This approach reduced false 

positives in shadow detection and improved 

object continuity in tracking systems. 

Recent hybrid models have also begun to 

incorporate attention mechanisms and 

lightweight neural networks for edge 

devices, targeting real-time applications. 

These systems aim to reduce the 

computational cost of deep learning while 

maintaining accuracy through model 

optimization and efficient feature selection. 

Overall, proposed configurations reflect a 

shift from hand-engineered rules to data-

driven, learning-based frameworks. They 

address the challenges of variability in 

lighting, scene dynamics, and object 

complexity more effectively, though they 

often require training datasets and 

computational infrastructure for 

deployment. 

V.RESULTS AND ANALYSIS 

5.1. INPUT IMAGE:  

 

   Fig:5.1.1: Input image 

The above figure shows the input RGB 

image with shadow from this input image 

we have to remove the shadow from that 

image as shown in the following below 

procedure.  

5.2. MATLAB WINDOW:  

 

Fig: 5.3: MATLAB WINDOW 

This is the main program of this paper by 

running this program we are getting the 

shadow free image. While we are running 

this program we will get the six images in 

which they are step by step outputs for 

running of the program.  

5.3. SHADOW IDENTIFICATION: 

 

Fig: 5.3:Shadow image 
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The above figure shows the image with 

shadow. we are identifying the shadow 

region by applying the scaling process.  

 

Fig: 5.4: output Shadow removed and 

reconstruction 

Stage 2 output:  

MSE: 155.837022 

PSNR: 26.204097 dB 

CONCLUSION 

Shadow removal remains a pivotal 

challenge in foreground detection for video 

surveillance systems, as shadows often lead 

to significant misclassification, affecting 

object detection, tracking, and behavior 

analysis. The literature reveals a steady 

progression from traditional techniques to 

sophisticated learning-based methods, each 

with distinct strengths and limitations. 

Existing configurations primarily rely on 

color-based models, edge analysis, texture 

consistency, and heuristic thresholds to 

distinguish shadows from actual moving 

objects. While these approaches are 

computationally efficient and relatively 

easy to implement, they struggle in diverse 

environments, particularly those with 

variable lighting or dynamic backgrounds. 

Methods using color spaces like HSV and 

YUV, combined with chromaticity and 

brightness distortion measures, have been 

effective in controlled environments but 

often fail under real-world conditions. In 

contrast, proposed configurations introduce 

a new paradigm with the integration of 

machine learning and deep learning 

models. These approaches leverage feature 

learning and large annotated datasets to 

improve classification accuracy and 

adaptability. Techniques like SVMs, 

CNNs, and dual-branch neural networks 

demonstrate high precision in shadow 

detection, outperforming traditional 

systems in both indoor and outdoor scenes. 

Additionally, hybrid models that combine 

conventional vision features with learned 

representations offer a practical balance 

between performance and real-time 

feasibility. 
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